
18.152 PROBLEM SET 4 SOLUTIONS

DONGHAO WANG

1. Problem 4

The last problem of this p-set is extremely challenging. Only one
student figured this problem out. The solution below is based upon
the work of Dhruv Rohatgi.

Many students realized the relation of Problem 4 with the funda-
mental Schauder estimate in Lecture 2:

Theorem 1.1. For any 0 ă α ă 1 and n ě 1, there exists a constant
Cpn, αq ą 0 such that the inequality

rD2usα ď Cr∆usα

holds for any function u P C2,αpRnq.

The Schwarz reflection principle in Problem 3 only applies to a har-
monic function, but in Problem 4, you start off with a general function

u P C2,α
pR̄n

`q.

In fact, you are supposed to modify the proof of Theorem 1.1 and try
to apply the Schwarz reflection principle at some intermediate step.

Recall first that the semi-norm r¨sα,Rn is defined as

rusα,Rn “ sup
x,yPRn

|upxq ´ upyq|

|x´ y|α
.

We introduce a more convenient semi-norm that is actually equivalent
to rusα,Rn :

Lemma 1.2. For any u P C2,αpRnq, define

rus1α :“ sup
xPRn,hą0,1ďkďn

|upx` hekq ´ upxq|

hα
,

where ek “ p0, ¨ ¨ ¨ , 0, 1, 0, ¨ ¨ ¨ , 0q is the basic vector in Rn with k-th
entry equal to 1 and all remaining entries vanishing. Then for some
dimensional constant C1pnq ą 0,

rus1α ď rusα ď C1 ¨ rus
1
α.
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Proof. It is clear that rus1α ď rusα. For the second inequality, take
x, y P Rn and define

x0 “ x, x1, ¨ ¨ ¨ , xn “ y

such that
xk ´ xk´1 “ ak ¨ ek, ak P R.

We compute:

|upxq ´ upyq| ď
n

ÿ

k“1

|upxkq ´ upxk´1q| ď
n

ÿ

k“1

|ak|
α
rus1α ď n ¨ |x´ y|αrus1α,

or
|upxq ´ upyq|

|x´ y|α
ď nrus1α.

Since x, y P Rn are arbitrary, rusα ď nrus1α. �

Lemma 1.2 also applies to R̄n
`. Now we are ready to prove Problem

4.

Solution to Problem 4. Suppose on the contrary that there exists a se-
quence of function tumu Ă C2,αpR̄n

`q such that

rD2umsα ě mr∆umsα.

Let
vm “

um
rD2ums1α

,

then rD2vms
1
α “ 1 and by Lemma 1.2

r∆vmsα “
r∆umsα
rD2ums1α

ď
rD2umsα
mrD2ums1α

ď
C1

m
Ñ 0.

In particular, we can find some xm P R̄n
`, hm ą 0 and km, im, jm P

t1, ¨ ¨ ¨ , nu such that

|BimBjmvmpxm ` hmekmq ´ BimBjmvmpxmq|

hαm
ą

1

2
.

Since km, im, jm can only take finite possible values, by passing to a sub-
sequence of tumu, we may assume km “ k, im “ i, jm “ j P t1, ¨ ¨ ¨ , nu
are independent of the subscript m; so

(1)
|BiBjvmpxm ` hmekq ´ BiBjvmpxmq|

hαm
ą

1

2
.

Let xnm be the last coordinate of xm. The most difficult part of
Problem 4 is to realize that we have to address two different cases in
different ways.

‚ lim supmÑ8 x
n
m{hm “ 8;
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‚ lim supmÑ8 x
n
m{hm ă 8;

We start with the first case, which is slightly simpler.

Case 1. By passing to a subsequence, assume

(2) lim
mÑ8

xnm
hm

“ 8;

Apply the rescaling argument to the pair pxm, hmq and define

wmpxq “
vmphmx` xmq

h2`αm

.

Then the function wm is defined on the sub-domain

tx P Rn : xn ě ´
xnm
hm
u.

By (1)

|BiBjwmpekq ´ BiBjwmp0q| ą
1

2
.

and rD2wmsα “ 1. Finally, set

pmpxq “ wmpxq ´ wmp0q ´ x
T∇wmp0q ´

1

2
xT∇2wmp0qx.

Now we can proceed as in the proof of Theorem 1.1 and use the Arzela-
Ascoli lemma to show

pm Ñ p8 P C
2,α
pRn

q

uniformly on the ball BRp0q for any R ą 0. The point is that the limit
p8 is defined on the whole space Rn because of the condition (2). Since
p8 is also harmonic, the proof of Theorem 1.1 can now proceed with
no difficulty. Details are omitted here.

Case 2. Now we address the second case. By passing to a subse-
quence of tvmu, assume the limit

(3) lim
mÑ8

xnm
hm

“ T ă 8

is finite; so when m " 1,

(4) xnm ď p1` T q ¨ hm.

The idea is to change the point xm into ym such that

‚ the last coordinate ynm “ 0;
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‚ the inequality (1) holds for ym with a possibly smaller constant,
i.e

(5)
|BiBjvmpym ` smenq ´ BiBjvmpymq|

sαm
ą ε,

for some ε ą 0, sm ą 0.

The rescaling argument will be applied to the pair pym, smq. To do
this, write xm “ px

1
m, x

n
mq and set

zm “ px
1
m, 0q,

i.e. zm is the projection of xm on the boundary Rn´1 ˆ t0u Ă R̄n
`. If

k ‰ n, consider the four points:

xm, zm, zm ` hmek, xm ` hmek.

Lemma 1.3. At least one of the following inequalities holds:

|BiBjvmpxmq ´ BiBjvmpzmq|

|xnm|
α

ě
1

4p1` T qα
,

|BiBjvmpzm ` hmekq ´ BiBjvmpxm ` hmekq|

|xnm|
α

ě
1

4p1` T qα
.

Proof of Lemma. Otherwise, we have

|BiBjvmpxmq ´ BiBjvmpzmq| ď
|xnm|

α

4p1` T qα
ď
hαm
4
,

|BiBjvmpzm ` hmekq ´ BiBjvmpxm ` hmekq| ď
|xnm|

α

4p1` T qα
ď
hαm
4
,

by (4). Note also BiBjvmpzm ` hmekq “ BiBjvmpzmq “ 0, since vm is
identically zero on the boundary Rn´1ˆt0u. By adding them together,
we reach a contradiction with the inequality (1). �

Return to the solution of Problem 4. If k ‰ n, then we make take
ym “ zm or zm ` hmek depending on which inequality holds in Lemma
1.3. Take sm “ xnm in (5).

If k “ n, we take ym “ zm, the projection of xm on the boundary.
The length sm is either xnm or xnm ` hm. Finally, take ε as

1

4pT ` 2qα
.

Now we apply the rescaling argument with respect to pym, smq. De-
fine

wmpxq “
vmpsmx` ymq

s2`αm

.
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Then the function wm is still defined on the space

R̄n
` :“ tx P Rn : xn ě 0u

and by (5)

|BiBjwmpekq ´ BiBjwmp0q| ą
1

2
.

Moreover,

rD2wmsα “ 1,

r∆wmsα ď 1{n,

wm ” 0 on Rn´1
ˆ t0u.

Finally, set

pmpxq “ wmpxq ´ wmp0q ´ x
T∇wmp0q ´

1

2
xT∇2wmp0qx.

Then

rD2pmsα “ 1,

r∆pmsα ď 1{n,

pm ” 0 on Rn´1
ˆ t0u,

pmp0q “ 0, ∇pmp0q “ 0, ∇2pmp0q “ 0,

pmpxq ” 0 on Rn´1
ˆ t0u.

Now we can proceed as in the proof of Theorem 1.1 and use the Arzela-
Ascoli lemma to show

pm Ñ p8 P C
2,α
pR̄n

`q

uniformly on the ball BRp0q X R̄n
` for any R ą 0 (the convergence is

not in C2,α in general, but the limit p8 does lie in this space). The
limit p8 is defined only on R̄n

`. Moreover,

rD2p8sα ď 1,

r∆p8sα “ 0,

p8 ” 0 on Rn´1
ˆ t0u,

p8p0q “ 0, ∇p8p0q “ 0, ∇2p8p0q “ 0,

p8pxq ” 0 on Rn´1
ˆ t0u.

In particular, p8 is a harmonic function by the second and the fourth
properties. Now we apply the Schwartz reflection principle to extend
p8 to the whole space Rn. The rest of the proof follows the same line
of arguments as in Theorem 1.1. Details are omitted here. �
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