18.152 PROBLEM SET 4 SOLUTIONS

DONGHAO WANG

1. Problem 4

The last problem of this p-set is extremely challenging. Only one student figured this problem out. The solution below is based upon the work of Dhruv Rohatgi.

Many students realized the relation of Problem 4 with the fundamental Schauder estimate in Lecture 2:

Theorem 1.1. For any $0<\alpha<1$ and $n \geqslant 1$, there exists a constant $C(n, \alpha)>0$ such that the inequality

$$
\left[D^{2} u\right]_{\alpha} \leqslant C[\Delta u]_{\alpha}
$$

holds for any function $u \in C^{2, \alpha}\left(\mathbb{R}^{n}\right)$.
The Schwarz reflection principle in Problem 3 only applies to a harmonic function, but in Problem 4, you start off with a general function

$$
u \in C^{2, \alpha}\left(\overline{\mathbb{R}}_{+}^{n}\right) .
$$

In fact, you are supposed to modify the proof of Theorem 1.1 and try to apply the Schwarz reflection principle at some intermediate step.

Recall first that the semi-norm $[\cdot]_{\alpha, \mathbb{R}^{n}}$ is defined as

$$
[u]_{\alpha, \mathbb{R}^{n}}=\sup _{x, y \in \mathbb{R}^{n}} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}} .
$$

We introduce a more convenient semi-norm that is actually equivalent to $[u]_{\alpha, \mathbb{R}^{n}}$:
Lemma 1.2. For any $u \in C^{2, \alpha}\left(\mathbb{R}^{n}\right)$, define

$$
[u]_{\alpha}^{\prime}:=\sup _{x \in \mathbb{R}^{n}, h>0,1 \leqslant k \leqslant n} \frac{\left|u\left(x+h e_{k}\right)-u(x)\right|}{h^{\alpha}},
$$

where $e_{k}=(0, \cdots, 0,1,0, \cdots, 0)$ is the basic vector in \mathbb{R}^{n} with k-th entry equal to 1 and all remaining entries vanishing. Then for some dimensional constant $C_{1}(n)>0$,

$$
[u]_{\alpha}^{\prime} \leqslant[u]_{\alpha} \leqslant C_{1} \cdot[u]_{\alpha}^{\prime} .
$$

Date: April. 26th, 2020.

Proof. It is clear that $[u]_{\alpha}^{\prime} \leqslant[u]_{\alpha}$. For the second inequality, take $x, y \in \mathbb{R}^{n}$ and define

$$
x_{0}=x, x_{1}, \cdots, x_{n}=y
$$

such that

$$
x_{k}-x_{k-1}=a_{k} \cdot e_{k}, a_{k} \in \mathbb{R}
$$

We compute:
$|u(x)-u(y)| \leqslant \sum_{k=1}^{n}\left|u\left(x_{k}\right)-u\left(x_{k-1}\right)\right| \leqslant \sum_{k=1}^{n}\left|a_{k}\right|^{\alpha}[u]_{\alpha}^{\prime} \leqslant n \cdot|x-y|^{\alpha}[u]_{\alpha}^{\prime}$, or

$$
\frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leqslant n[u]_{\alpha}^{\prime} .
$$

Since $x, y \in \mathbb{R}^{n}$ are arbitrary, $[u]_{\alpha} \leqslant n[u]_{\alpha}^{\prime}$.
Lemma 1.2 also applies to $\overline{\mathbb{R}}_{+}^{n}$. Now we are ready to prove Problem 4.

Solution to Problem 4. Suppose on the contrary that there exists a sequence of function $\left\{u_{m}\right\} \subset C^{2, \alpha}\left(\overline{\mathbb{R}}_{+}^{n}\right)$ such that

$$
\left[D^{2} u_{m}\right]_{\alpha} \geqslant m\left[\Delta u_{m}\right]_{\alpha} .
$$

Let

$$
v_{m}=\frac{u_{m}}{\left[D^{2} u_{m}\right]_{\alpha}^{\prime}},
$$

then $\left[D^{2} v_{m}\right]_{\alpha}^{\prime}=1$ and by Lemma 1.2

$$
\left[\Delta v_{m}\right]_{\alpha}=\frac{\left[\Delta u_{m}\right]_{\alpha}}{\left[D^{2} u_{m}\right]_{\alpha}^{\prime}} \leqslant \frac{\left[D^{2} u_{m}\right]_{\alpha}}{m\left[D^{2} u_{m}\right]_{\alpha}^{\prime}} \leqslant \frac{C_{1}}{m} \rightarrow 0
$$

In particular, we can find some $x_{m} \in \overline{\mathbb{R}}_{+}^{n}, h_{m}>0$ and $k_{m}, i_{m}, j_{m} \in$ $\{1, \cdots, n\}$ such that

$$
\frac{\left|\partial_{i_{m}} \partial_{j_{m}} v_{m}\left(x_{m}+h_{m} e_{k_{m}}\right)-\partial_{i_{m}} \partial_{j_{m}} v_{m}\left(x_{m}\right)\right|}{h_{m}^{\alpha}}>\frac{1}{2} .
$$

Since k_{m}, i_{m}, j_{m} can only take finite possible values, by passing to a subsequence of $\left\{u_{m}\right\}$, we may assume $k_{m}=k, i_{m}=i, j_{m}=j \in\{1, \cdots, n\}$ are independent of the subscript m; so

$$
\begin{equation*}
\frac{\left|\partial_{i} \partial_{j} v_{m}\left(x_{m}+h_{m} e_{k}\right)-\partial_{i} \partial_{j} v_{m}\left(x_{m}\right)\right|}{h_{m}^{\alpha}}>\frac{1}{2} \tag{1}
\end{equation*}
$$

Let x_{m}^{n} be the last coordinate of x_{m}. The most difficult part of Problem 4 is to realize that we have to address two different cases in different ways.

- $\lim \sup _{m \rightarrow \infty} x_{m}^{n} / h_{m}=\infty ;$
- $\lim \sup _{m \rightarrow \infty} x_{m}^{n} / h_{m}<\infty$;

We start with the first case, which is slightly simpler.
Case 1. By passing to a subsequence, assume

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{x_{m}^{n}}{h_{m}}=\infty ; \tag{2}
\end{equation*}
$$

Apply the rescaling argument to the pair $\left(x_{m}, h_{m}\right)$ and define

$$
w_{m}(x)=\frac{v_{m}\left(h_{m} x+x_{m}\right)}{h_{m}^{2+\alpha}} .
$$

Then the function w_{m} is defined on the sub-domain

$$
\left\{x \in \mathbb{R}^{n}: x_{n} \geqslant-\frac{x_{m}^{n}}{h_{m}}\right\} .
$$

By (1)

$$
\left|\partial_{i} \partial_{j} w_{m}\left(e_{k}\right)-\partial_{i} \partial_{j} w_{m}(0)\right|>\frac{1}{2}
$$

and $\left[D^{2} w_{m}\right]_{\alpha}=1$. Finally, set

$$
p_{m}(x)=w_{m}(x)-w_{m}(0)-x^{T} \nabla w_{m}(0)-\frac{1}{2} x^{T} \nabla^{2} w_{m}(0) x .
$$

Now we can proceed as in the proof of Theorem 1.1 and use the ArzelaAscoli lemma to show

$$
p_{m} \rightarrow p_{\infty} \in C^{2, \alpha}\left(\mathbb{R}^{n}\right)
$$

uniformly on the ball $B_{R}(0)$ for any $R>0$. The point is that the limit p_{∞} is defined on the whole space \mathbb{R}^{n} because of the condition (22). Since p_{∞} is also harmonic, the proof of Theorem 1.1 can now proceed with no difficulty. Details are omitted here.

Case 2. Now we address the second case. By passing to a subsequence of $\left\{v_{m}\right\}$, assume the limit

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{x_{m}^{n}}{h_{m}}=T<\infty \tag{3}
\end{equation*}
$$

is finite; so when $m \gg 1$,

$$
\begin{equation*}
x_{m}^{n} \leqslant(1+T) \cdot h_{m} \tag{4}
\end{equation*}
$$

The idea is to change the point x_{m} into y_{m} such that

- the last coordinate $y_{m}^{n}=0$;
- the inequality (11) holds for y_{m} with a possibly smaller constant, i.e

$$
\begin{equation*}
\frac{\left|\partial_{i} \partial_{j} v_{m}\left(y_{m}+s_{m} e_{n}\right)-\partial_{i} \partial_{j} v_{m}\left(y_{m}\right)\right|}{s_{m}^{\alpha}}>\epsilon, \tag{5}
\end{equation*}
$$

for some $\epsilon>0, s_{m}>0$.
The rescaling argument will be applied to the pair $\left(y_{m}, s_{m}\right)$. To do this, write $x_{m}=\left(x_{m}^{\prime}, x_{m}^{n}\right)$ and set

$$
z_{m}=\left(x_{m}^{\prime}, 0\right)
$$

i.e. z_{m} is the projection of x_{m} on the boundary $\mathbb{R}^{n-1} \times\{0\} \subset \overline{\mathbb{R}}_{+}^{n}$. If $k \neq n$, consider the four points:

$$
x_{m}, z_{m}, z_{m}+h_{m} e_{k}, x_{m}+h_{m} e_{k} .
$$

Lemma 1.3. At least one of the following inequalities holds:

$$
\begin{array}{r}
\frac{\left|\partial_{i} \partial_{j} v_{m}\left(x_{m}\right)-\partial_{i} \partial_{j} v_{m}\left(z_{m}\right)\right|}{\left|x_{m}^{n}\right|^{\alpha}} \geqslant \frac{1}{4(1+T)^{\alpha}}, \\
\frac{\left|\partial_{i} \partial_{j} v_{m}\left(z_{m}+h_{m} e_{k}\right)-\partial_{i} \partial_{j} v_{m}\left(x_{m}+h_{m} e_{k}\right)\right|}{\left|x_{m}^{n}\right|^{\alpha}} \geqslant \frac{1}{4(1+T)^{\alpha}} .
\end{array}
$$

Proof of Lemma. Otherwise, we have

$$
\begin{array}{r}
\left|\partial_{i} \partial_{j} v_{m}\left(x_{m}\right)-\partial_{i} \partial_{j} v_{m}\left(z_{m}\right)\right| \leqslant \frac{\left|x_{m}^{n}\right|^{\alpha}}{4(1+T)^{\alpha}} \leqslant \frac{h_{m}^{\alpha}}{4}, \\
\left|\partial_{i} \partial_{j} v_{m}\left(z_{m}+h_{m} e_{k}\right)-\partial_{i} \partial_{j} v_{m}\left(x_{m}+h_{m} e_{k}\right)\right| \leqslant \frac{\left|x_{m}^{n}\right|^{\alpha}}{4(1+T)^{\alpha}} \leqslant \frac{h_{m}^{\alpha}}{4},
\end{array}
$$

by (4). Note also $\partial_{i} \partial_{j} v_{m}\left(z_{m}+h_{m} e_{k}\right)=\partial_{i} \partial_{j} v_{m}\left(z_{m}\right)=0$, since v_{m} is identically zero on the boundary $\mathbb{R}^{n-1} \times\{0\}$. By adding them together, we reach a contradiction with the inequality (1).

Return to the solution of Problem 4. If $k \neq n$, then we make take $y_{m}=z_{m}$ or $z_{m}+h_{m} e_{k}$ depending on which inequality holds in Lemma 1.3. Take $s_{m}=x_{m}^{n}$ in (5).

If $k=n$, we take $y_{m}=z_{m}$, the projection of x_{m} on the boundary. The length s_{m} is either x_{m}^{n} or $x_{m}^{n}+h_{m}$. Finally, take ϵ as

$$
\frac{1}{4(T+2)^{\alpha}}
$$

Now we apply the rescaling argument with respect to $\left(y_{m}, s_{m}\right)$. Define

$$
w_{m}(x)=\frac{v_{m}\left(s_{m} x+y_{m}\right)}{s_{m}^{2+\alpha}} .
$$

Then the function w_{m} is still defined on the space

$$
\overline{\mathbb{R}}_{+}^{n}:=\left\{x \in \mathbb{R}^{n}: x_{n} \geqslant 0\right\}
$$

and by (5)

$$
\left|\partial_{i} \partial_{j} w_{m}\left(e_{k}\right)-\partial_{i} \partial_{j} w_{m}(0)\right|>\frac{1}{2}
$$

Moreover,

$$
\begin{aligned}
{\left[D^{2} w_{m}\right]_{\alpha} } & =1 \\
{\left[\Delta w_{m}\right]_{\alpha} } & \leqslant 1 / n \\
w_{m} & \equiv 0 \text { on } \mathbb{R}^{n-1} \times\{0\} .
\end{aligned}
$$

Finally, set

$$
p_{m}(x)=w_{m}(x)-w_{m}(0)-x^{T} \nabla w_{m}(0)-\frac{1}{2} x^{T} \nabla^{2} w_{m}(0) x .
$$

Then

$$
\begin{aligned}
{\left[D^{2} p_{m}\right]_{\alpha} } & =1 \\
{\left[\Delta p_{m}\right]_{\alpha} } & \leqslant 1 / n, \\
p_{m} & \equiv 0 \text { on } \mathbb{R}^{n-1} \times\{0\}, \\
p_{m}(0) & =0, \nabla p_{m}(0)=0, \nabla^{2} p_{m}(0)=0, \\
p_{m}(x) & \equiv 0 \text { on } \mathbb{R}^{n-1} \times\{0\} .
\end{aligned}
$$

Now we can proceed as in the proof of Theorem 1.1 and use the ArzelaAscoli lemma to show

$$
p_{m} \rightarrow p_{\infty} \in C^{2, \alpha}\left(\overline{\mathbb{R}}_{+}^{n}\right)
$$

uniformly on the ball $B_{R}(0) \cap \overline{\mathbb{R}}_{+}^{n}$ for any $R>0$ (the convergence is not in $C^{2, \alpha}$ in general, but the limit p_{∞} does lie in this space). The limit p_{∞} is defined only on $\overline{\mathbb{R}}_{+}^{n}$. Moreover,

$$
\begin{aligned}
{\left[D^{2} p_{\infty}\right]_{\alpha} } & \leqslant 1 \\
{\left[\Delta p_{\infty}\right]_{\alpha} } & =0 \\
p_{\infty} & \equiv 0 \text { on } \mathbb{R}^{n-1} \times\{0\} \\
p_{\infty}(0) & =0, \nabla p_{\infty}(0)=0, \nabla^{2} p_{\infty}(0)=0, \\
p_{\infty}(x) & \equiv 0 \text { on } \mathbb{R}^{n-1} \times\{0\}
\end{aligned}
$$

In particular, p_{∞} is a harmonic function by the second and the fourth properties. Now we apply the Schwartz reflection principle to extend p_{∞} to the whole space \mathbb{R}^{n}. The rest of the proof follows the same line of arguments as in Theorem 1.1. Details are omitted here.

