18.152 PROBLEM SET 4 SOLUTIONS

DONGHAO WANG

1. Problem 4

The last problem of this p-set is extremely challenging. Only one student figured this problem out. The solution below is based upon the work of Dhruv Rohatgi.

Many students realized the relation of Problem 4 with the fundamental Schauder estimate in Lecture 2:

Theorem 1.1. For any $0 < \alpha < 1$ and $n \ge 1$, there exists a constant $C(n, \alpha) > 0$ such that the inequality

$$[D^2 u]_{\alpha} \leqslant C[\Delta u]_{\alpha}$$

holds for any function $u \in C^{2,\alpha}(\mathbb{R}^n)$.

The Schwarz reflection principle in Problem 3 only applies to a harmonic function, but in Problem 4, you start off with a general function

$$u \in C^{2,\alpha}(\bar{\mathbb{R}}^n_+).$$

In fact, you are supposed to modify the proof of Theorem 1.1 and try to apply the Schwarz reflection principle at some intermediate step.

Recall first that the semi-norm $[\cdot]_{\alpha,\mathbb{R}^n}$ is defined as

$$[u]_{\alpha,\mathbb{R}^n} = \sup_{x,y\in\mathbb{R}^n} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}.$$

We introduce a more convenient semi-norm that is actually equivalent to $[u]_{\alpha,\mathbb{R}^n}$:

Lemma 1.2. For any $u \in C^{2,\alpha}(\mathbb{R}^n)$, define

$$[u]'_{\alpha} := \sup_{x \in \mathbb{R}^n, h > 0, 1 \leq k \leq n} \frac{|u(x + he_k) - u(x)|}{h^{\alpha}},$$

where $e_k = (0, \dots, 0, 1, 0, \dots, 0)$ is the basic vector in \mathbb{R}^n with k-th entry equal to 1 and all remaining entries vanishing. Then for some dimensional constant $C_1(n) > 0$,

$$[u]'_{\alpha} \leq [u]_{\alpha} \leq C_1 \cdot [u]'_{\alpha}.$$

Date: April. 26th, 2020.

Proof. It is clear that $[u]'_{\alpha} \leq [u]_{\alpha}$. For the second inequality, take $x, y \in \mathbb{R}^n$ and define

$$x_0 = x, x_1, \cdots, x_n = y$$

such that

$$x_k - x_{k-1} = a_k \cdot e_k, \ a_k \in \mathbb{R}.$$

We compute:

$$|u(x) - u(y)| \leq \sum_{k=1}^{n} |u(x_k) - u(x_{k-1})| \leq \sum_{k=1}^{n} |a_k|^{\alpha} [u]'_{\alpha} \leq n \cdot |x - y|^{\alpha} [u]'_{\alpha},$$

or
$$|u(x) - u(y)|$$

$$\frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \leq n[u]'_{\alpha}.$$

Since $x, y \in \mathbb{R}^n$ are arbitrary, $[u]_{\alpha} \leq n[u]'_{\alpha}$.

Lemma 1.2 also applies to $\overline{\mathbb{R}}^n_+$. Now we are ready to prove Problem 4.

Solution to Problem 4. Suppose on the contrary that there exists a sequence of function $\{u_m\} \subset C^{2,\alpha}(\bar{\mathbb{R}}^n_+)$ such that

$$[D^2 u_m]_{\alpha} \ge m[\Delta u_m]_{\alpha}.$$

Let

$$v_m = \frac{u_m}{[D^2 u_m]'_{\alpha}},$$

then $[D^2 v_m]'_{\alpha} = 1$ and by Lemma 1.2

$$[\Delta v_m]_{\alpha} = \frac{[\Delta u_m]_{\alpha}}{[D^2 u_m]'_{\alpha}} \le \frac{[D^2 u_m]_{\alpha}}{m[D^2 u_m]'_{\alpha}} \le \frac{C_1}{m} \to 0$$

In particular, we can find some $x_m \in \mathbb{R}^n_+$, $h_m > 0$ and $k_m, i_m, j_m \in \{1, \dots, n\}$ such that

$$\frac{\left|\partial_{i_m}\partial_{j_m}v_m(x_m+h_m e_{k_m})-\partial_{i_m}\partial_{j_m}v_m(x_m)\right|}{h_m^{\alpha}} > \frac{1}{2}.$$

Since k_m, i_m, j_m can only take finite possible values, by passing to a subsequence of $\{u_m\}$, we may assume $k_m = k, i_m = i, j_m = j \in \{1, \dots, n\}$ are independent of the subscript m; so

(1)
$$\frac{\left|\partial_i\partial_j v_m(x_m + h_m e_k) - \partial_i\partial_j v_m(x_m)\right|}{h_m^{\alpha}} > \frac{1}{2}$$

Let x_m^n be the last coordinate of x_m . The most difficult part of Problem 4 is to realize that we have to address two different cases in different ways.

• $\limsup_{m \to \infty} x_m^n / h_m = \infty;$

2

• $\limsup_{m\to\infty} x_m^n/h_m < \infty;$

We start with the first case, which is slightly simpler.

Case 1. By passing to a subsequence, assume

(2)
$$\lim_{m \to \infty} \frac{x_m^n}{h_m} = \infty;$$

Apply the rescaling argument to the pair (x_m, h_m) and define

$$w_m(x) = \frac{v_m(h_m x + x_m)}{h_m^{2+\alpha}}.$$

Then the function w_m is defined on the sub-domain

$$\{x \in \mathbb{R}^n : x_n \ge -\frac{x_m^n}{h_m}\}.$$

By (1)

$$\left|\partial_i\partial_j w_m(e_k) - \partial_i\partial_j w_m(0)\right| > \frac{1}{2}.$$

and $[D^2 w_m]_{\alpha} = 1$. Finally, set

$$p_m(x) = w_m(x) - w_m(0) - x^T \nabla w_m(0) - \frac{1}{2} x^T \nabla^2 w_m(0) x.$$

Now we can proceed as in the proof of Theorem 1.1 and use the Arzela-Ascoli lemma to show

$$p_m \to p_\infty \in C^{2,\alpha}(\mathbb{R}^n)$$

uniformly on the ball $B_R(0)$ for any R > 0. The point is that the limit p_{∞} is defined on the whole space \mathbb{R}^n because of the condition (2). Since p_{∞} is also harmonic, the proof of Theorem 1.1 can now proceed with no difficulty. Details are omitted here.

Case 2. Now we address the second case. By passing to a subsequence of $\{v_m\}$, assume the limit

(3)
$$\lim_{m \to \infty} \frac{x_m^n}{h_m} = T < \infty$$

is finite; so when $m \gg 1$,

(4)
$$x_m^n \leqslant (1+T) \cdot h_m$$

The idea is to change the point x_m into y_m such that

• the last coordinate $y_m^n = 0$;

DONGHAO WANG

• the inequality (1) holds for y_m with a possibly smaller constant, i.e

(5)
$$\frac{\left|\partial_i\partial_j v_m(y_m + s_m e_n) - \partial_i\partial_j v_m(y_m)\right|}{s_m^{\alpha}} > \epsilon,$$

for some $\epsilon > 0$, $s_m > 0$.

The rescaling argument will be applied to the pair (y_m, s_m) . To do this, write $x_m = (x'_m, x^n_m)$ and set

$$z_m = (x'_m, 0),$$

i.e. z_m is the projection of x_m on the boundary $\mathbb{R}^{n-1} \times \{0\} \subset \mathbb{R}^n_+$. If $k \neq n$, consider the four points:

$$x_m, z_m, z_m + h_m e_k, x_m + h_m e_k$$

Lemma 1.3. At least one of the following inequalities holds:

$$\frac{\left|\partial_i\partial_j v_m(x_m) - \partial_i\partial_j v_m(z_m)\right|}{|x_m^n|^{\alpha}} \ge \frac{1}{4(1+T)^{\alpha}},$$
$$\frac{\left|\partial_i\partial_j v_m(z_m + h_m e_k) - \partial_i\partial_j v_m(x_m + h_m e_k)\right|}{|x_m^n|^{\alpha}} \ge \frac{1}{4(1+T)^{\alpha}}.$$

Proof of Lemma. Otherwise, we have

$$\left|\partial_i\partial_j v_m(x_m) - \partial_i\partial_j v_m(z_m)\right| \leqslant \frac{|x_m^n|^{\alpha}}{4(1+T)^{\alpha}} \leqslant \frac{h_m^{\alpha}}{4},$$
$$\left|\partial_i\partial_j v_m(z_m + h_m e_k) - \partial_i\partial_j v_m(x_m + h_m e_k)\right| \leqslant \frac{|x_m^n|^{\alpha}}{4(1+T)^{\alpha}} \leqslant \frac{h_m^{\alpha}}{4},$$

by (4). Note also $\partial_i \partial_j v_m(z_m + h_m e_k) = \partial_i \partial_j v_m(z_m) = 0$, since v_m is identically zero on the boundary $\mathbb{R}^{n-1} \times \{0\}$. By adding them together, we reach a contradiction with the inequality (1).

Return to the solution of Problem 4. If $k \neq n$, then we make take $y_m = z_m$ or $z_m + h_m e_k$ depending on which inequality holds in Lemma 1.3. Take $s_m = x_m^n$ in (5).

If k = n, we take $y_m = z_m$, the projection of x_m on the boundary. The length s_m is either x_m^n or $x_m^n + h_m$. Finally, take ϵ as

$$\frac{1}{4(T+2)^{\alpha}}.$$

Now we apply the rescaling argument with respect to (y_m, s_m) . Define

$$w_m(x) = \frac{v_m(s_m x + y_m)}{s_m^{2+\alpha}}.$$

4

Then the function w_m is still defined on the space

$$\bar{\mathbb{R}}^n_+ := \{ x \in \mathbb{R}^n : x_n \ge 0 \}$$

and by (5)

$$|\partial_i \partial_j w_m(e_k) - \partial_i \partial_j w_m(0)| > \frac{1}{2}.$$

Moreover,

$$\begin{split} [D^2 w_m]_{\alpha} &= 1, \\ [\Delta w_m]_{\alpha} \leqslant 1/n, \\ w_m &\equiv 0 \text{ on } \mathbb{R}^{n-1} \times \{0\}. \end{split}$$

Finally, set

$$p_m(x) = w_m(x) - w_m(0) - x^T \nabla w_m(0) - \frac{1}{2} x^T \nabla^2 w_m(0) x.$$

Then

$$\begin{split} [D^2 p_m]_{\alpha} &= 1, \\ [\Delta p_m]_{\alpha} &\leq 1/n, \\ p_m &\equiv 0 \text{ on } \mathbb{R}^{n-1} \times \{0\}, \\ p_m(0) &= 0, \ \nabla p_m(0) = 0, \ \nabla^2 p_m(0) = 0, \\ p_m(x) &\equiv 0 \text{ on } \mathbb{R}^{n-1} \times \{0\}. \end{split}$$

Now we can proceed as in the proof of Theorem 1.1 and use the Arzela-Ascoli lemma to show

$$p_m \to p_\infty \in C^{2,\alpha}(\bar{\mathbb{R}}^n_+)$$

uniformly on the ball $B_R(0) \cap \overline{\mathbb{R}}^n_+$ for any R > 0 (the convergence is not in $C^{2,\alpha}$ in general, but the limit p_{∞} does lie in this space). The limit p_{∞} is defined only on $\overline{\mathbb{R}}^n_+$. Moreover,

$$\begin{split} [D^2 p_{\infty}]_{\alpha} &\leq 1, \\ [\Delta p_{\infty}]_{\alpha} &= 0, \\ p_{\infty} &\equiv 0 \text{ on } \mathbb{R}^{n-1} \times \{0\}, \\ p_{\infty}(0) &= 0, \ \nabla p_{\infty}(0) &= 0, \ \nabla^2 p_{\infty}(0) &= 0, \\ p_{\infty}(x) &\equiv 0 \text{ on } \mathbb{R}^{n-1} \times \{0\}. \end{split}$$

In particular, p_{∞} is a harmonic function by the second and the fourth properties. Now we apply the Schwartz reflection principle to extend p_{∞} to the whole space \mathbb{R}^n . The rest of the proof follows the same line of arguments as in Theorem 1.1. Details are omitted here.